next up previous
Next: 12 Numerical tests on Up: guide Previous: 10 LQR design techniques

Subsections


11 Design case studies

This section contains three case studies of control system design and analysis using Time-Delay System Toolbox.

Case study 1: Model 2-dimensional system,

Case study 2: Combustion stability in liquid propellant rocket motors,

Case study 3: Wind tunnel model.

11.1 Model 2-dimensional system

Consider 2-dimensional system with delay [33]

$\displaystyle \dot{x}$(t) = $\displaystyle \left[\vphantom{\begin{array}{c c} 0 & 1   [2mm] 0 & 0 \\
\end{array}}\right.$$\displaystyle \begin{array}{c c} 0 & 1   [2mm] 0 & 0 \\
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} 0 & 1   [2mm] 0 & 0 \\
\end{array}}\right]$x(t) + $\displaystyle \left[\vphantom{\begin{array}{c c} -0.3 & -0.1   [2mm] -0.2 & -0.4 \\
\end{array}}\right.$$\displaystyle \begin{array}{c c} -0.3 & -0.1   [2mm] -0.2 & -0.4 \\
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} -0.3 & -0.1   [2mm] -0.2 & -0.4 \\
\end{array}}\right]$x(t - 5) + $\displaystyle \left[\vphantom{\begin{array}{c} 0   [2mm] 0.333 \\
\end{array}}\right.$$\displaystyle \begin{array}{c} 0   [2mm] 0.333 \\
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c} 0   [2mm] 0.333 \\
\end{array}}\right]$u(t) (11.1)

$\displaystyle \xi$(t) = $\displaystyle \left[\vphantom{\begin{array}{c c} 0.9 & 0.1 \\
\end{array}}\right.$$\displaystyle \begin{array}{c c} 0.9 & 0.1 \\
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} 0.9 & 0.1 \\
\end{array}}\right]$x(t) , (11.2)

hence

A = $\displaystyle \left[\vphantom{\begin{array}{c c} 0 & 1   [2mm] 0 & 0 \\
\end{array}}\right.$$\displaystyle \begin{array}{c c} 0 & 1   [2mm] 0 & 0 \\
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} 0 & 1   [2mm] 0 & 0 \\
\end{array}}\right]$ ,  I>A$\scriptstyle \tau$ = $\displaystyle \left[\vphantom{\begin{array}{c c} -0.3 & -0.1   [2mm] -0.2 & -0.4 \\
\end{array}}\right.$$\displaystyle \begin{array}{c c} -0.3 & -0.1   [2mm] -0.2 & -0.4 \\
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} -0.3 & -0.1   [2mm] -0.2 & -0.4 \\
\end{array}}\right]$ ,        B = $\displaystyle \left[\vphantom{\begin{array}{c} 0   [2mm] 0.333 \\
\end{array}}\right.$$\displaystyle \begin{array}{c} 0   [2mm] 0.333 \\
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c} 0   [2mm] 0.333 \\
\end{array}}\right]$ ,        $\displaystyle \tau$ = 5 .

Open-loop system (11.1) is unstable because it has two open-loop roots with positive real parts: $ \lambda_{1,2}^{}$ = 0.198±0.323 i. Figure 1 and Figure 2 show the simulation results by stepd and impulsed for the open-loop system.

Let us take the weight matrices as

M = $\displaystyle \left[\vphantom{
\begin{array}{c c}
\alpha & 0   [2mm]
0 & \alpha \\
\end{array}}\right.$$\displaystyle \begin{array}{c c}
\alpha & 0   [2mm]
0 & \alpha \\
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{c c}
\alpha & 0   [2mm]
0 & \alpha \\
\end{array}}\right]$ ,        N = 1 , (11.3)

where $ \alpha$ is a positive number.

A) Take $ \alpha$ = 1. We can find, using functions lqdelay, the matrices

C = $\displaystyle \left[\vphantom{\begin{array}{c c} -1 &-2.6469 \end{array}}\right.$$\displaystyle \begin{array}{c c} -1 &-2.6469 \end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} -1 &-2.6469 \end{array}}\right]$ ,        D0 = $\displaystyle \left[\vphantom{\begin{array}{c c} 0 & -0.3330 \end{array}}\right.$$\displaystyle \begin{array}{c c} 0 & -0.3330 \end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} 0 & -0.3330 \end{array}}\right]$ ,

D1 = $\displaystyle \left[\vphantom{\begin{array}{c c} 0 & -0.3330   1 & -0.8814
\end{array}}\right.$$\displaystyle \begin{array}{c c} 0 & -0.3330   1 & -0.8814
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} 0 & -0.3330   1 & -0.8814
\end{array}}\right]$ ,        D2 = $\displaystyle \left[\vphantom{\begin{array}{c c} 0.1053 & 0.1921   -0.0052 & 0.1297
\end{array}}\right.$$\displaystyle \begin{array}{c c} 0.1053 & 0.1921   -0.0052 & 0.1297
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} 0.1053 & 0.1921   -0.0052 & 0.1297
\end{array}}\right]$ ,

of the linear control (10.4).

Figure 1: Step response
\includegraphics[width=16cm]{fig1.eps}

Figure 2: Impulse response
\includegraphics[width=16cm]{fig2.eps}

Thus to system (11.1) and the weight matrices (11.3) (with $ \alpha$ = 1) corresponds the control

u0(x, y( . )) = $\displaystyle \left[\vphantom{\begin{array}{c c} -1 &-2.6469 \end{array}}\right.$$\displaystyle \begin{array}{c c} -1 &-2.6469 \end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} -1 &-2.6469 \end{array}}\right]$x +

+ $\displaystyle \left[\vphantom{\begin{array}{c c} 0 & -0.3330 \end{array}}\right.$$\displaystyle \begin{array}{c c} 0 & -0.3330 \end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} 0 & -0.3330 \end{array}}\right]$$\displaystyle \int\limits_{-5}^{0}$ $\displaystyle \Biggl\{$e$\scriptstyle ^{\left[\begin{array}{c c} 0 & -0.3330   1 & -0.8814
\end{array}\right] \times S }$$\displaystyle \left[\vphantom{\begin{array}{c c} 0.1053 & 0.1921   -0.0052 & 0.1297
\end{array}}\right.$$\displaystyle \begin{array}{c c} 0.1053 & 0.1921   -0.0052 & 0.1297
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} 0.1053 & 0.1921   -0.0052 & 0.1297
\end{array}}\right]$y(s)$\displaystyle \Biggr\}$ ds .
(11.4)

The corresponding closed-loop system has the form

$\displaystyle \dot{x}$(t) = $\displaystyle \left[\vphantom{\begin{array}{c c}
0 & 1   [2mm] -0.333 & -0.8814 \\
\end{array}}\right.$$\displaystyle \begin{array}{c c}
0 & 1   [2mm] -0.333 & -0.8814 \\
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c}
0 & 1   [2mm] -0.333 & -0.8814 \\
\end{array}}\right]$x(t) + $\displaystyle \left[\vphantom{\begin{array}{c c} -0.3 & -0.1   [2mm] -0.2 & -0.4 \\
\end{array}}\right.$$\displaystyle \begin{array}{c c} -0.3 & -0.1   [2mm] -0.2 & -0.4 \\
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} -0.3 & -0.1   [2mm] -0.2 & -0.4 \\
\end{array}}\right]$x(t - 5) +

+ $\displaystyle \left[\vphantom{\begin{array}{c c} 0 & 0   [2mm] 0 & -0.1109 \\
\end{array}}\right.$$\displaystyle \begin{array}{c c} 0 & 0   [2mm] 0 & -0.1109 \\
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} 0 & 0   [2mm] 0 & -0.1109 \\
\end{array}}\right]$$\displaystyle \int\limits_{-5}^{0}$ $\displaystyle \Biggl\{$e$\scriptstyle ^{\left[\begin{array}{c c} 0 & -0.3330   1 & -0.8814
\end{array}\right] \times S }$$\displaystyle \left[\vphantom{\begin{array}{c c} 0.1053 & 0.1921   -0.0052 & 0.1297
\end{array}}\right.$$\displaystyle \begin{array}{c c} 0.1053 & 0.1921   -0.0052 & 0.1297
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} 0.1053 & 0.1921   -0.0052 & 0.1297
\end{array}}\right]$y(s)$\displaystyle \Biggr\}$ ds .
(11.5)

Using functions of Toolbox one can check that solutions of the closed-loop system tend to zero (see Figure 3).

B) Take $ \alpha$ = 10. We can find, using functions lqdelay, the matrices

C = $\displaystyle \left[\vphantom{\begin{array}{c c} -3.1623 &-5.3845 \end{array}}\right.$$\displaystyle \begin{array}{c c} -3.1623 &-5.3845 \end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} -3.1623 &-5.3845 \end{array}}\right]$ ,  I>D0 = $\displaystyle \left[\vphantom{\begin{array}{c c} 0 & -0.3330 \end{array}}\right.$$\displaystyle \begin{array}{c c} 0 & -0.3330 \end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} 0 & -0.3330 \end{array}}\right]$ ,

D1 = $\displaystyle \left[\vphantom{\begin{array}{c c} 0 & -1.053   1 & -1.793
\end{array}}\right.$$\displaystyle \begin{array}{c c} 0 & -1.053   1 & -1.793
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} 0 & -1.053   1 & -1.793
\end{array}}\right]$ ,  I>D2 = $\displaystyle \left[\vphantom{\begin{array}{c c} 0.065 & 0.0889   0.0338 & 0.0826
\end{array}}\right.$$\displaystyle \begin{array}{c c} 0.065 & 0.0889   0.0338 & 0.0826
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} 0.065 & 0.0889   0.0338 & 0.0826
\end{array}}\right]$ .

Thus to system (11.1) and the weight matrices (11.3) (with $ \alpha$ = 10) corresponds the control

u0(x, y( . )) = $\displaystyle \left[\vphantom{\begin{array}{c c} -3.1623 &-5.3845 \end{array}}\right.$$\displaystyle \begin{array}{c c} -3.1623 &-5.3845 \end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} -3.1623 &-5.3845 \end{array}}\right]$x +

+ $\displaystyle \left[\vphantom{\begin{array}{c c} 0 & -0.3330 \end{array}}\right.$$\displaystyle \begin{array}{c c} 0 & -0.3330 \end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} 0 & -0.3330 \end{array}}\right]$ $\displaystyle \int\limits_{-5}^{0}$$\displaystyle \Biggl\{$e$\scriptstyle ^{\left[\begin{array}{c c} 0 & -1.053   1 & -1.793
\end{array}\right] \times S }$$\displaystyle \left[\vphantom{\begin{array}{c c} 0.065 & 0.0889   0.0338 & 0.0826
\end{array}}\right.$$\displaystyle \begin{array}{c c} 0.065 & 0.0889   0.0338 & 0.0826
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} 0.065 & 0.0889   0.0338 & 0.0826
\end{array}}\right]$y(s)$\displaystyle \Biggr\}$ ds .
(11.6)

The corresponding closed-loop system has the form

$\displaystyle \dot{x}$(t) = $\displaystyle \left[\vphantom{\begin{array}{c c}
0 & 1   [2mm] -1.0530 & -1.7930 \\
\end{array}}\right.$$\displaystyle \begin{array}{c c}
0 & 1   [2mm] -1.0530 & -1.7930 \\
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c}
0 & 1   [2mm] -1.0530 & -1.7930 \\
\end{array}}\right]$x(t) + $\displaystyle \left[\vphantom{\begin{array}{c c} -0.3 & -0.1   [2mm] -0.2 & -0.4 \\
\end{array}}\right.$$\displaystyle \begin{array}{c c} -0.3 & -0.1   [2mm] -0.2 & -0.4 \\
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} -0.3 & -0.1   [2mm] -0.2 & -0.4 \\
\end{array}}\right]$x(t - 5) +

+ $\displaystyle \left[\vphantom{\begin{array}{c c} 0 & 0   [2mm] 0 & -0.1109 \\
\end{array}}\right.$$\displaystyle \begin{array}{c c} 0 & 0   [2mm] 0 & -0.1109 \\
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} 0 & 0   [2mm] 0 & -0.1109 \\
\end{array}}\right]$ $\displaystyle \int\limits_{-5}^{0}$$\displaystyle \Biggl\{$e$\scriptstyle ^{\left[\begin{array}{c c} 0 & -1.053   1 & -1.793
\end{array}\right] \times S }$$\displaystyle \left[\vphantom{\begin{array}{c c} 0.065 & 0.0889   0.0338 & 0.0826
\end{array}}\right.$$\displaystyle \begin{array}{c c} 0.065 & 0.0889   0.0338 & 0.0826
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c} 0.065 & 0.0889   0.0338 & 0.0826
\end{array}}\right]$y(s)$\displaystyle \Biggr\}$ ds .
(11.7)

Using functions of Toolbox one can check that solutions of the closed-loop systems tend to zero (see Figure 4).

Figure 3: Closed-loop system response in case of $ \alpha$ = 1
\includegraphics[height=13cm]{fig3.eps}

Figure 4: Closed-loop system response in case of $ \alpha$ = 10
\includegraphics[height=13cm]{fig4.eps}

11.2 Combustion stability in liquid propellant rocket motors

A linearized version of the feed system and combustion chamber equations, assuming nonsteady flow, are given by 5


$\displaystyle \dot{\phi}$(t) = ($\displaystyle \gamma$ - 1) $\displaystyle \phi$(t) - $\displaystyle \gamma$ $\displaystyle \phi$(t - $\displaystyle \delta$) + $\displaystyle \mu$(t - $\displaystyle \delta$)  
$\displaystyle \dot{\mu}_{1}^{}$(t) = $\displaystyle {\frac{1}{\xi J}}$ $\displaystyle \left[\vphantom{ - \psi (t) +
\frac{p_0 - p_1}{2 \Delta p} }\right.$ - $\displaystyle \psi$(t) + $\displaystyle {\frac{p_0 - p_1}{2 \Delta p}}$$\displaystyle \left.\vphantom{ - \psi (t) +
\frac{p_0 - p_1}{2 \Delta p} }\right]$  
$\displaystyle \dot{\mu}$(t) = $\displaystyle {\frac{1}{(1-\xi) J}}$ $\displaystyle \left[\vphantom{ - \mu (t) +
\psi (t) - P   \phi (t) }\right.$ - $\displaystyle \mu$(t) + $\displaystyle \psi$(t) - P $\displaystyle \phi$(t)$\displaystyle \left.\vphantom{ - \mu (t) +
\psi (t) - P   \phi (t) }\right]$  
$\displaystyle \dot{\psi}$(t) = $\displaystyle {\frac{1}{E}}$ $\displaystyle \left[\vphantom{ \mu_1 (t) -
\mu (t) }\right.$$\displaystyle \mu_{1}^{}$(t) - $\displaystyle \mu$(t)$\displaystyle \left.\vphantom{ \mu_1 (t) -
\mu (t) }\right]$ . (11.8)

Here
$ \phi$(t) = fractional variation of pressure in the combustion chamber,
t is the unit of time normalized with gas residence time, $ \theta_{g}^{}$, in steady operation,
$ \tilde{\tau}$ = value of time lag in steady operation,
$ \tilde{p}$ = pressure in combustion chamber in steady operation,
$ \overline{\tau p^\gamma}$ = const for some number $ \gamma$,
$\displaystyle \delta$ = $\displaystyle {\frac{\tilde \tau}{\theta_g}}$,
$ \mu$(t) = fractional variation of injection and burning rate,
$ \psi$(t) = relative variation of p1,

=1cm p1 = instantaneous pressure at that place in the feeding line where the capacitance representing the elasticity is located,

$ \xi$ = fractional length for the constant pressure supply,
J = inertial parameter of the line,
P = pressure drop parameter,
$ \mu_{1}^{}$(t) = fractional variation of instantaneous mass flow upstream of the capacitance,
$ \Delta$p = injector pressure drop in steady operation,
p0 = regulated gas pressure for constant pressure supply,
E = elasticity parameter of the line.

For our purpose we have taken

u = $\displaystyle {\frac{p_0 - p_1}{2 \Delta p}}$

to be a control variable and guided by [10] have adopted the following representative numerical values:
$ \gamma$ = 0.8, $ \xi$ = 0.5, $ \delta$ = 1, J = 2, P = 1, E = 1.

This gives, for x(t) = ($ \phi$(t),$ \mu_{1}^{}$(t),$ \mu$(t),$ \psi$(t))',

$\displaystyle \dot{x}$(t) = $\displaystyle \left[\vphantom{\begin{array}{c c c c}
- 0.2 & 0 & 0 & 0   [2m...
... 1   [2mm]
-1 & 0 & -1 & 1   [2mm]
0 & 1 & -1 & 0   \end{array}}\right.$$\displaystyle \begin{array}{c c c c}
- 0.2 & 0 & 0 & 0   [2mm]
0 & 0 & 0 & - 1   [2mm]
-1 & 0 & -1 & 1   [2mm]
0 & 1 & -1 & 0   \end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c c}
- 0.2 & 0 & 0 & 0   [2m...
... 1   [2mm]
-1 & 0 & -1 & 1   [2mm]
0 & 1 & -1 & 0   \end{array}}\right]$x(t) + $\displaystyle \left[\vphantom{\begin{array}{c c c c}
- 0.8 & 0 & 1 & 0   [2m...
...0 & 0   [2mm]
0 & 0 & 0 & 0   [2mm]
0 & 0 & 0 & 0   \end{array}}\right.$$\displaystyle \begin{array}{c c c c}
- 0.8 & 0 & 1 & 0   [2mm]
0 & 0 & 0 & 0   [2mm]
0 & 0 & 0 & 0   [2mm]
0 & 0 & 0 & 0   \end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c c}
- 0.8 & 0 & 1 & 0   [2m...
...0 & 0   [2mm]
0 & 0 & 0 & 0   [2mm]
0 & 0 & 0 & 0   \end{array}}\right]$x(t - 1) + $\displaystyle \left[\vphantom{\begin{array}{c} 0   [2mm]
1   [2mm]
0   [2mm]
0 \\
\end{array}}\right.$$\displaystyle \begin{array}{c} 0   [2mm]
1   [2mm]
0   [2mm]
0 \\
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c} 0   [2mm]
1   [2mm]
0   [2mm]
0 \\
\end{array}}\right]$u(t) (11.9)

The system (11.9) has two roots with positive real part: $ \lambda_{1,2}^{}$ = 0.11255±1.52015 i.

Let us take the weight matrices as

M = $\displaystyle \left[\vphantom{
\begin{array}{c c c c}
1 & 0 & 0 & 0   [2mm]
0...
... 0 & 0   [2mm]
0 & 0 & 1 & 0   [2mm]
0 & 0 & 0 & 1 \\
\end{array}}\right.$$\displaystyle \begin{array}{c c c c}
1 & 0 & 0 & 0   [2mm]
0 & 1 & 0 & 0   [2mm]
0 & 0 & 1 & 0   [2mm]
0 & 0 & 0 & 1 \\
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{c c c c}
1 & 0 & 0 & 0   [2mm]
0...
... 0 & 0   [2mm]
0 & 0 & 1 & 0   [2mm]
0 & 0 & 0 & 1 \\
\end{array}}\right]$ ,   I>N = 1 . (11.10)

Using function lqdelay we can find the matrices

C = $\displaystyle \left[\vphantom{\begin{array}{c c c c}
0.0398 & -1.1134 & 0.2332 & -0.1198
\end{array}}\right.$$\displaystyle \begin{array}{c c c c}
0.0398 & -1.1134 & 0.2332 & -0.1198
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c c}
0.0398 & -1.1134 & 0.2332 & -0.1198
\end{array}}\right]$ ,

D0 = $\displaystyle \left[\vphantom{\begin{array}{c c c c}
0 & -1 & 0 & 0 \end{array}}\right.$$\displaystyle \begin{array}{c c c c}
0 & -1 & 0 & 0 \end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c c}
0 & -1 & 0 & 0 \end{array}}\right]$ ,

D1 = $\displaystyle \left[\vphantom{\begin{array}{c c c c}
-0.2 & 0.0398 & -1 & 0 \\...
...0 & 1 \\
0 & 0.2332 & -1 & -1 \\
0 & -1.1198 & 1 & 0
\end{array}}\right.$$\displaystyle \begin{array}{c c c c}
-0.2 & 0.0398 & -1 & 0 \\
0 & - 1.1134 & 0 & 1 \\
0 & 0.2332 & -1 & -1 \\
0 & -1.1198 & 1 & 0
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c c}
-0.2 & 0.0398 & -1 & 0 \\...
...0 & 1 \\
0 & 0.2332 & -1 & -1 \\
0 & -1.1198 & 1 & 0
\end{array}}\right]$ ,

D2 = $\displaystyle \left[\vphantom{\begin{array}{c c c c}
-3.3101 & 0 & 4.1376 & 0 ...
...
-0.0180 & 0 & 0.0225 & 0 \\
0.2386 & 0 & -0.2983 & 0
\end{array}}\right.$$\displaystyle \begin{array}{c c c c}
-3.3101 & 0 & 4.1376 & 0 \\
0.1794 & 0...
... & 0 \\
-0.0180 & 0 & 0.0225 & 0 \\
0.2386 & 0 & -0.2983 & 0
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c c}
-3.3101 & 0 & 4.1376 & 0 ...
...
-0.0180 & 0 & 0.0225 & 0 \\
0.2386 & 0 & -0.2983 & 0
\end{array}}\right]$ .

Thus to system (11.9) with the weight matrices (11.10) corresponds LQR control

u0(x, y( . )) = $\displaystyle \left[\vphantom{\begin{array}{c c c c}
0.0398 & -1.1134 & 0.2332 & -0.1198
\end{array}}\right.$$\displaystyle \begin{array}{c c c c}
0.0398 & -1.1134 & 0.2332 & -0.1198
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c c}
0.0398 & -1.1134 & 0.2332 & -0.1198
\end{array}}\right]$x + $\displaystyle \left[\vphantom{\begin{array}{c c c c}
0 & -1 & 0 & 0 \end{array}}\right.$$\displaystyle \begin{array}{c c c c}
0 & -1 & 0 & 0 \end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c c}
0 & -1 & 0 & 0 \end{array}}\right]$×

×$\displaystyle \int\limits_{-1}^{0}$$\displaystyle \Biggl\{$e$\scriptstyle ^{\left[\begin{array}{c c c c}
-0.2 & 0.0398 & -1 & 0 \\
0 & -...
...
0 & 0.2332 & -1 & -1 \\
0 & -1.1198 & 1 & 0
\end{array}\right] \times S }$$\displaystyle \left[\vphantom{\begin{array}{c c c c}
-3.3101 & 0 & 4.1376 & 0 ...
...
-0.0180 & 0 & 0.0225 & 0 \\
0.2386 & 0 & -0.2983 & 0
\end{array}}\right.$$\displaystyle \begin{array}{c c c c}
-3.3101 & 0 & 4.1376 & 0 \\
0.1794 & 0...
... & 0 \\
-0.0180 & 0 & 0.0225 & 0 \\
0.2386 & 0 & -0.2983 & 0
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c c}
-3.3101 & 0 & 4.1376 & 0 ...
...
-0.0180 & 0 & 0.0225 & 0 \\
0.2386 & 0 & -0.2983 & 0
\end{array}}\right]$y(s)$\displaystyle \Biggr\}$ ds .

The corresponding closed-loop system has the form

$\displaystyle \dot{x}$(t) = $\displaystyle \left[\vphantom{\begin{array}{c c c c}
\gamma - 1 & 0 & 0 & 0 \\...
...98   [2mm]
-1 & 0 & -1 & 1   [2mm]
0 & 1 & -1 & 0   \end{array}}\right.$$\displaystyle \begin{array}{c c c c}
\gamma - 1 & 0 & 0 & 0   [2mm]
0.0398 ...
... & -1.1198   [2mm]
-1 & 0 & -1 & 1   [2mm]
0 & 1 & -1 & 0   \end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c c}
\gamma - 1 & 0 & 0 & 0 \\...
...98   [2mm]
-1 & 0 & -1 & 1   [2mm]
0 & 1 & -1 & 0   \end{array}}\right]$x(t) +

+ $\displaystyle \left[\vphantom{\begin{array}{c c c c}
- \gamma & 0 & 1 & 0   ...
...0 & 0   [2mm]
0 & 0 & 0 & 0   [2mm]
0 & 0 & 0 & 0   \end{array}}\right.$$\displaystyle \begin{array}{c c c c}
- \gamma & 0 & 1 & 0   [2mm]
0 & 0 & 0 & 0   [2mm]
0 & 0 & 0 & 0   [2mm]
0 & 0 & 0 & 0   \end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c c}
- \gamma & 0 & 1 & 0   ...
...0 & 0   [2mm]
0 & 0 & 0 & 0   [2mm]
0 & 0 & 0 & 0   \end{array}}\right]$x(t - $\displaystyle \delta$) + $\displaystyle \left[\vphantom{\begin{array}{c c c c}
0 & 0 & 0 & 0   [2mm]
...
...0 & 0   [2mm]
0 & 0 & 0 & 0   [2mm]
0 & 0 & 0 & 0   \end{array}}\right.$$\displaystyle \begin{array}{c c c c}
0 & 0 & 0 & 0   [2mm]
0 & -1 & 0 & 0   [2mm]
0 & 0 & 0 & 0   [2mm]
0 & 0 & 0 & 0   \end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c c}
0 & 0 & 0 & 0   [2mm]
...
...0 & 0   [2mm]
0 & 0 & 0 & 0   [2mm]
0 & 0 & 0 & 0   \end{array}}\right]$×

×$\displaystyle \int\limits_{-1}^{0}$$\displaystyle \Biggl\{$e$\scriptstyle ^{\left[\begin{array}{c c c c}
-0.2 & 0.0398 & -1 & 0 \\
0 & -...
...
0 & 0.2332 & -1 & -1 \\
0 & -1.1198 & 1 & 0
\end{array}\right] \times S }$$\displaystyle \left[\vphantom{\begin{array}{c c c c}
-3.3101 & 0 & 4.1376 & 0 ...
...
-0.0180 & 0 & 0.0225 & 0 \\
0.2386 & 0 & -0.2983 & 0
\end{array}}\right.$$\displaystyle \begin{array}{c c c c}
-3.3101 & 0 & 4.1376 & 0 \\
0.1794 & 0...
... & 0 \\
-0.0180 & 0 & 0.0225 & 0 \\
0.2386 & 0 & -0.2983 & 0
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c c}
-3.3101 & 0 & 4.1376 & 0 ...
...
-0.0180 & 0 & 0.0225 & 0 \\
0.2386 & 0 & -0.2983 & 0
\end{array}}\right]$y(s)$\displaystyle \Biggr\}$ ds .
(11.11)

Using functions of Toolbox one can check that solutions of the closed-loop systems tend to zero (see Figure 5).

Solutions of the optimal closed-loop system corresponding to $ \gamma$ = 0.95 and $ \delta$ = 0.87 one can see on Figure 6.

Figure 5: In case of $ \gamma$ = 0.8 and $ \delta$ = 1
\includegraphics[height=13cm]{fig5.eps}

Figure 6: In case of $ \gamma$ = 0.95 and $ \delta$ = 0.87
\includegraphics[height=13cm]{fig6.eps}

11.3 Wind tunnel model

A linearized model of the high-speed closed-air unit wind tunnel is [26,27]


$\displaystyle \dot{x}_{1}^{}$(t) = - a x1(t) + a k x2(t - $\displaystyle \tau$) ,  
$\displaystyle \dot{x}_{2}^{}$(t) = x3(t) , (11.12)
$\displaystyle \dot{x}_{3}^{}$(t) = - w2 x2(t) - 2 $\displaystyle \xi$ $\displaystyle \omega$ x3(t) + $\displaystyle \omega^{2}_{}$u3(t) ,  

with a = $\displaystyle {\frac{1}{1.964}}$, k = - 0.117, w = 6, $ \xi$ = 0.8, $ \tau$ = 0.33s.

The state variable x1, x2, x3 represent deviations from a chosen operating point (equilibrium point) of the following quantities: x1 = Mach number, x2 = actuator position guide vane angle in a driving fan, x3 = actuator rate. The delay represents the time of the transport between the fan and the test section.

The system can be written in matrix form

$\displaystyle \dot{x}$(t) = A0x(t) + A$\scriptstyle \tau$x(t - $\displaystyle \tau$) + B u(t) , (11.13)

where

A0 = $\displaystyle \left[\vphantom{\begin{array}{c c c }
- a & 0 & 0   [2mm]
0 & 0 & 1   [2mm]
0 & -\omega^2 & -2   \xi   \omega
  \end{array}}\right.$$\displaystyle \begin{array}{c c c }
- a & 0 & 0   [2mm]
0 & 0 & 1   [2mm]
0 & -\omega^2 & -2   \xi   \omega
  \end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c }
- a & 0 & 0   [2mm]
0 & 0 & 1   [2mm]
0 & -\omega^2 & -2   \xi   \omega
  \end{array}}\right]$ ,

A$\scriptstyle \tau$ = $\displaystyle \left[\vphantom{\begin{array}{c c c }
0 & a   k & 0   [2mm]
0 & 0 & 0   [2mm]
0 & 0 & 0
  \end{array}}\right.$$\displaystyle \begin{array}{c c c }
0 & a   k & 0   [2mm]
0 & 0 & 0   [2mm]
0 & 0 & 0
  \end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c }
0 & a   k & 0   [2mm]
0 & 0 & 0   [2mm]
0 & 0 & 0
  \end{array}}\right]$ ,

B = $\displaystyle \left[\vphantom{\begin{array}{c}
0   [2mm]
0   [2mm]
\omega^2 \\
\end{array}}\right.$$\displaystyle \begin{array}{c}
0   [2mm]
0   [2mm]
\omega^2 \\
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c}
0   [2mm]
0   [2mm]
\omega^2 \\
\end{array}}\right]$ .

Let us take the weight matrices as

M = $\displaystyle \left[\vphantom{
\begin{array}{c c c c}
1 & 0 & 0   [2mm]
0 & 1 & 0   [2mm]
0 & 0 & 1 \\
\end{array}}\right.$$\displaystyle \begin{array}{c c c c}
1 & 0 & 0   [2mm]
0 & 1 & 0   [2mm]
0 & 0 & 1 \\
\end{array}$$\displaystyle \left.\vphantom{
\begin{array}{c c c c}
1 & 0 & 0   [2mm]
0 & 1 & 0   [2mm]
0 & 0 & 1 \\
\end{array}}\right]$ ,   I>N = 1 . (11.14)

Using function lqdelay we can find the matrices

C = $\displaystyle \left[\vphantom{\begin{array}{c c c}
0 & -0.4142 & -0.6101
\end{array}}\right.$$\displaystyle \begin{array}{c c c}
0 & -0.4142 & -0.6101
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c}
0 & -0.4142 & -0.6101
\end{array}}\right]$ ,

D0 = $\displaystyle \left[\vphantom{\begin{array}{c c c}
0 & 0 & -36 \end{array}}\right.$$\displaystyle \begin{array}{c c c}
0 & 0 & -36 \end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c}
0 & 0 & -36 \end{array}}\right]$ ,

D1 = $\displaystyle \left[\vphantom{\begin{array}{c c c}
-0.5092 & 0 & 0 \\
0 & 0 & -50.9117 \\
0 & 1.0000 & -41.1639
\end{array}}\right.$$\displaystyle \begin{array}{c c c}
-0.5092 & 0 & 0 \\
0 & 0 & -50.9117 \\
0 & 1.0000 & -41.1639
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c}
-0.5092 & 0 & 0 \\
0 & 0 & -50.9117 \\
0 & 1.0000 & -41.1639
\end{array}}\right]$ ,

D2 = $\displaystyle \left[\vphantom{\begin{array}{c c c}
0 & 0.0495 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}}\right.$$\displaystyle \begin{array}{c c c}
0 & 0.0495 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c}
0 & 0.0495 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}}\right]$ .

Thus to system (11.13) and the weight matrices (11.14) corresponds LQR control

u0(x, y( . )) = $\displaystyle \left[\vphantom{\begin{array}{c c c}
0 & -0.4142 & -0.6101
\end{array}}\right.$$\displaystyle \begin{array}{c c c}
0 & -0.4142 & -0.6101
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c}
0 & -0.4142 & -0.6101
\end{array}}\right]$x + $\displaystyle \left[\vphantom{\begin{array}{c c c}
0 & 0 & -36 \end{array}}\right.$$\displaystyle \begin{array}{c c c}
0 & 0 & -36 \end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c}
0 & 0 & -36 \end{array}}\right]$×

×$\displaystyle \int\limits_{-\tau}^{0}$$\displaystyle \Biggl\{$e$\scriptstyle ^{\left[\begin{array}{c c c}
-0.5092 & 0 & 0 \\
0 & 0 & -50.9117 \\
0 & 1.0000 & -41.1639
\end{array}\right] \times S }$$\displaystyle \left[\vphantom{\begin{array}{c c c}
0 & 0.0495 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}}\right.$$\displaystyle \begin{array}{c c c}
0 & 0.0495 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c}
0 & 0.0495 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}}\right]$y(s)$\displaystyle \Biggr\}$ ds .

The corresponding closed-loop system has the form

$\displaystyle \dot{x}$(t) = $\displaystyle \left[\vphantom{\begin{array}{c c c}
-0.5092 & 0 & 0   [2mm]
0 & 0 & 1.0000   [2mm]
0 & -50.9117 & -41.1639   \end{array}}\right.$$\displaystyle \begin{array}{c c c}
-0.5092 & 0 & 0   [2mm]
0 & 0 & 1.0000   [2mm]
0 & -50.9117 & -41.1639   \end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c}
-0.5092 & 0 & 0   [2mm]
0 & 0 & 1.0000   [2mm]
0 & -50.9117 & -41.1639   \end{array}}\right]$x(t) +

+ $\displaystyle \left[\vphantom{\begin{array}{c c c}
0 & 0.0596 & 0   [2mm]
0 & 0 & 0   [2mm]
0 & 0 & 0   \end{array}}\right.$$\displaystyle \begin{array}{c c c}
0 & 0.0596 & 0   [2mm]
0 & 0 & 0   [2mm]
0 & 0 & 0   \end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c}
0 & 0.0596 & 0   [2mm]
0 & 0 & 0   [2mm]
0 & 0 & 0   \end{array}}\right]$x(t - $\displaystyle \tau$) + $\displaystyle \left[\vphantom{\begin{array}{c c c c}
0 & 0 & 0   [2mm]
0 & 0 & 0   [2mm]
0 & 0 & -1296   \end{array}}\right.$$\displaystyle \begin{array}{c c c c}
0 & 0 & 0   [2mm]
0 & 0 & 0   [2mm]
0 & 0 & -1296   \end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c c}
0 & 0 & 0   [2mm]
0 & 0 & 0   [2mm]
0 & 0 & -1296   \end{array}}\right]$×

×$\displaystyle \int\limits_{-\tau}^{0}$$\displaystyle \Biggl\{$e$\scriptstyle ^{\left[\begin{array}{c c c}
-0.5092 & 0 & 0 \\
0 & 0 & -50.9117 \\
0 & 1.0000 & -41.1639
\end{array}\right] \times S }$$\displaystyle \left[\vphantom{\begin{array}{c c c}
0 & 0.0495 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}}\right.$$\displaystyle \begin{array}{c c c}
0 & 0.0495 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}$$\displaystyle \left.\vphantom{\begin{array}{c c c}
0 & 0.0495 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}}\right]$y(s)$\displaystyle \Biggr\}$ ds .
(11.15)

Using functions of Toolbox one can check that solutions of the closed-loop systems tend to zero (see Figure 7).

Figure 7: Closed loop system response
\includegraphics[height=13cm]{fig7.eps}


next up previous
Next: 12 Numerical tests on Up: guide Previous: 10 LQR design techniques