Next: 5 Пример файла-шаблона для
Up: Как подготовить MAIK-версию (для
Previous: 4 Тело статьи
Bibliography
- 1
-
Korepin, V.E., Bogolyubov, N.M., and Izergin, A.G.,
Quantum Inverse Scattering Method and Correlation Functions,
Cambridge Univ. Press, 1993.
- 2
-
Jing, N.,
Quantum Kac-Moody Algebras and Vertex Representations, Lett. Math.
Phys., 1998, vol. 44, pp. 261-271.
- 3
-
Tarasov, V.,
Bilinear Identity for -Hypergeometric Integrals, Preprint. Osaka
Univ., 1997; Osaka J. Math., 1999 (to appear).
- 4
-
Tarasov, V. and Varchenko, A.,
Geometry of -Hypergeometric Functions, Quantum Affine Algebras
and Elliptic Quantum Groups, Paris:
Soc. Math. Fr., 1997, pp. 1-135 (Asterisque, vol. 246).
- 5
-
Tarasov, V. and Varchenko, A.,
Geometry of -Hypergeometric
Functions as a Bridge between Yangians and Quantum Affine Algebras,
Invent. Math., 1997, vol. 128, no. 3, pp. 501-588.
- 6
-
Nagel, B., The Discussion Concerning the Nobel Prize for Max
Planck, Science Technology and Society in the Time of Alfred Nobel,
New York: Pergamon, 1982.
- 7
-
Morse, F. and Feshbach, H., Methods of Theoretical Physics,
New York: McGraw-Hill, 1953.
- 8
-
Courant, R. and Hilbert, D., Methoden der mathematischen
Physik, Berlin: Springer, 1931.
- 9
-
Dirac, P., Quantized Singularities in the Electromagnetic Field,
Proc. Roy. Soc. London A, 1931, vol. 133, pp. 60-72.
- 10
-
Yang, C.N., Selected Papers 1945-1980 with Commentary,
San Francisco: Freeman, 1983.
- 11
-
Yang, C.N. and Mills, R., Conservation of Isotopic Spin and
Isotopic Gauge Invariance, Phys. Rev., 1954, vol. 96, pp. 191-195.
- 12
-
Fock, V., L'equation d'onde de Dirac et la geometrie de Riemann,
J. Phys. et Rad., 1929, vol. 70, pp. 392-405.
- 13
-
Weyl, H., Electron and Gravitation, Ztschr. Phys., 1929,
vol. 56, pp. 330-352.
- 14
-
Klein, O., On the Theory of Charged Fields: Submitted to the
Conf.: New Theories in Physics. Warsaw (Pol.), 1938, Surv. High
Energy Phys., 1986, vol. 5, pp. 269.
- 15
-
Feynman, R.P., Quantum Theory of Gravitation, Acta Phys.
Polon., 1963, vol. 24, pp. 697-722.
- 16
-
Lichnerowicz, A., Theorie globale des connexions et des
groupes d'holonomie, Roma: Ed. Cremonese, 1955.
- 17
-
Faddeev, L. and Popov, V., Feynman Diagrams for the Yang-Mills
Field, Phys. Lett. B, 1967, vol. 25, pp. 29-30.
- 18
-
Popov, V. and Faddeev, L., Perturbation Theory for
Gauge-Invariant Fields, Preprint National Accelerator Laboratory,
NAL-THY-57, 1972.
- 19
-
't Hooft, G., Renormalizable Lagrangians for Massive Yang-Mills
Fields, Nucl. Phys. B, 1971, vol. 35, pp. 167-188.
- 20
-
Coleman, S., Secret Symmetries: An Introduction to Spontaneous
Symmetry Breakdown and Gauge Fields: Lecture given at 1973 Intern. Summer
School in Phys. Ettore Majorana. Erice (Sicily), 1973, Erice Subnucl.
Phys., 1973.
- 21
-
't Hooft, G., When Was Asymptotic Freedom Discovered?
Rehabilitation of Quantum Field Theory, Preprint, 1998,
hep-th/9808154.
- 22
-
Gross, D., Twenty Years of Asymptotic Freedom, Preprint,
1998, hep-th/9809080.