В линейном нормированном пространстве
происходит движение вектора
по правилу
| (1.1) |
| (1.2) |
Считаем, что управление и помеха удовлетворяют ограничениям
| (1.3) |
Движение формализуем с помощью ломаных Эйлера. Зафиксируем начальное состояние
и
рассмотрим разбиение
| (1.4) |
Допустимым управлением является любая функция
| (1.5) |
Зафиксируем управление
. Построим ломаную Эйлера
| (1.6) |
Сформулируем цель синтеза управления. Задано второе линейное нормированное пространство
, точка
и
многозначная функция
. Цель синтеза управления заключается в осуществлении
включения
| (1.7) |
Мы не налагаем на множества
условий, которые давали бы возможность определить
реализовавшееся в момент времени
состояние
, как предельную точку конечных состояний
последовательности ломаных
при диаметре разбиения, стремящемся к нулю. Поэтому формализуем условие того,
что какое-то управление
гарантирует в момент времени
включение
,
не прибегая к определению предельных движений.
Обозначим через
единичный шар в
и через
алгебраическую сумму множеств
и
| (1.8) |
О п р е д е л е н и е 1.1. Управление
гарантирует включение
из начального состояния
, если
для любого числа
найдется число
такое, что для любой ломаной
с диаметром разбиения
выполнено включение
| (1.9) |
Синтез управления будем осуществлять, опираясь на конструкцию
стабильного моста
, который в
рассматриваемом случае будет
являться многозначной функцией
, при
,
удовлетворяющей граничному условию
| (1.10) |
В монографии [1, стр. 294] отмечалось, что при построении стабильных мостов можно использовать различные аппроксимационные аналоги уравнения движения.
Рассмотрим случай, когда условие стабильности записывается с помощью некоторой многозначной функции
следующим образом:
![]() |
(1.11) |
Сформулируем условия, при которых мы будем проводить синтез управления.
Условие 1. Каждое из множеств
является выпуклым компактом.
Условие 2. При
определена функция
такая, что для любых
выполнено включение
![]() |
(1.12) |
Условие 3. При
определена функция
такая, что
при всех
выполнено включение
![]() |
(1.13) |
Условие 4. При
определена функция
такая, что при всех
выполнено включение
![]() |
(1.14) |
Условие 5. Стабильный мост удовлетворяет следующему
условию замкнутости по
.