Up: SPINADEL
Previous: 12 Concluding remarks
-
- 1
-
The Metallic Means and Design, Nexus II: Architecture and
Mathematics, Kim Williams Ed., 1998.
- 2
-
From the Golden Mean to Chaos, Nueva Libreria, 1998.
- 3
-
Pisot and Salem Numbers, Birkhauser, 1992.
- 4
- Pisot-Cyclotomic Quasilattices and Their Symmetry
Semigroups, in Quasicrystals and Discrete Geometry, Fields
Institute Monographs, Jiri Patera Ed., American Mathematical
Society, 1998.
- 5
-
Pisot-Cyclotomic Integers for Quasilattices, The Mathematics
of Long-Range Aperiodic Order, R.V. Moody Ed., pp. 175-198,
1995.
- 6
- Beta-Integers as Natural Counting Systems for
Quasicrystals, J. Phys. A: Math. Gen., 1998, no 31,
pp. 6449-6472.
- 7
-
``Triangulature" in Andrea Palladio, Nexus Network Journal,
Architecture and Mathematics on line, Kim Williams Ed., 1999.
- 8
-
Localization Problem in One Dimension: Mapping and Escape, Phys. Rev. Lett., 1983, vol. 50, no 23, pp. 1870-1872.
- 9
-
Shape of Fractal Growth Patterns: Exactly Solvable Models and
Stability Considerations, Phys. Rev. Lett., 1998, vol. 60,
no. 24, pp. 2511-2514.
- 10
-
The Metallic Means Family and Multifractal Spectra, Nonlinear
Analysis, 1999, vol. 36, pp. 721-745.
- 11
-
Electronic States on a Penrose Lattice, Phys. Rev. Lett.,
1986, vol. 56., pp. 2740-2743.
- 12
-
Critical Wave Functions and a Cantor-Set Spectrum of a
One-Dimensional Quasi-Crystal Model, Phys. Rev., B, 1987,
vol 35, no. 3, pp. 1020-1033.
- 13
-
New Localization in a Quasi-Periodic System, Phys. Rev.
Lett., 1989, vol. 62, no. 23.
- 14
-
Multifractal Wave Functions on a Fibonacci Lattice, Phys.
Rev., B, 1989, vol. 40, no. 10, pp. 7413-7416.
- 15
-
Scaling Analysis of Quasi-Periodic Systems: Generalized Harper
Model, Phys. Rev., B, 1989, vol. 40, no. 12,
pp. 8225-8234,.
- 16
-
Energy Spectrum and the Quantum Hall Effect on the Square Lattice
with Next-Nearest-Neighbor Hopping, Phys. Rev., B, 1990,
vol. 42, no. 13, pp. 8282-8294.
- 17
-
Multifractal Method for Spectra and Wave Functions of
Quasiperiodic Systems, ``Quasicrystals", T. Fujiwara and T. Ogawa
Eds., Berlin: Springer-Verlag, 1990.
- 18
-
Electronic Spectra and Wave Function Properties of One-Dimensional
Quasi-Periodic Systems: a Scaling Approach, Int. J. of Mod.
Phys., B, 1992, vol. 6, no. 3 and no. 4, pp. 281-320.
- 19
-
Quantum Mechanics and the Possibility of a Cantorian Space-Time,
Chaos, Solitons and Fractals, 1991, vol. 1, pp. 485-487.
- 20
-
Renormalization Approach to the Dimension of Diffusion in
Cantorian Space, Appl. Math. Lett., 8, 1995, no. 1,
pp. 59-63.
- 21
-
Average Symmetry Stability and Eergodicity of Multidimensional
Cantor Sets, Nuovo Cimento, 109 B, 1994, no. 2.
- 22
-
Silver Mean Hausdorff Dimension and Cantor Sets, Chaos,
Solitons and Fractals, 1994, no. 4, pp. 1862-1870.
- 23
-
Dimensions and Cantor Spectra, Chaos, Solitons and Fractals,
1994, no. 4, pp. 2121-2132.
- 24
-
Statistical Geometry of a Cantor Discretum and Semiconductors,
Computers Math. Appl., 1995, vol. 29, no 12, pp. 103-110.
- 25
-
Quasiperiodic Dynamics for a Generalized Third-Order Fibonacci
Series, Phys. Rev., B, 1998, vol. 38, no. 10,
pp. 7091-7093.
- 26
-
Dynamical Maps, Cantor Spectra and Localization for Fibonacci and
Related Quasiperiodic Lattices, Phys. Rev. Lett., 1998,
vol. 60, no. 11, pp. 1081-1084.
- 27
-
Electronic Properties of the Tight-Binding Fibonacci Hamiltonian,
J. Phys. A: Math. Gen., 1989, vol. 22, pp. 951-970.
- 28
-
COBE Satellite Measurement, Hyperspheres, Superstrings and the
Dimension of Space Time, Chaos, Solitons and Fractals, 1998,
vol. 9, no. 8, pp. 1445-1471.
- 29
-
Remarks to the PV Number
Chaos, Solitons and Fractals, 1999, vol. 10, no. 8,
pp. 1335-1341.
- 30
-
The Golden Mean in Quantum Geometry, Knot Theory and Related
Topics, Chaos, Solitons and Fractals, 1999, vol. 10, no. 8,
pp. 1303-1307.
- 31
-
Number Theory in Science and Communication, with Applications
in Cryptography, Physics, Digital Information, Computing and
Self-Similarity, 3rd ed., Berlin: Springer, 1997.
2003-06-05